products
产品分类 不同SICK传感器芯体材质的特点分析
一、SICK传感器主要是利用硅的电学特性;在MEMS微机械结构中,则是利用其机械特性,继而产生新一代的硅机电器件和装置。硅材料储量丰富,成本低。硅晶体生长容易,并存在超纯无杂的材质,不纯度在十亿分这一的量,因而本身的内耗小,机械因数可高达10^6数量。
设计得当的微活动结构,如微传感器,能达到小的迟滞和蠕变、的重复性和长期稳定性以及高性。所以用硅材制作硅压阻压力传感器,有利于解决长困扰传感器域的3个难题——迟滞、重复性及长期漂移。
SICK传感器硅材料密度为2.33g/cm^2,是不锈钢密度的1/3.5,而弯曲强度却为不锈钢的3.5倍,具有较高的强度/密度比和较高的刚度/密度比。
SICK传感器而热膨胀系数则不到不锈钢的1/7,能很好地和低膨胀Invar合金连接,并避免热应力产生。单晶硅为立方晶体,是各向异性材料。许多机械特性和电子特性取决于晶向,如弹性模量和压阻效应等。
单晶硅的电阻应变灵敏系数高。在同样的输入下,可以得到比金属应变计更高的信号输出,一般为金属的10-100倍,能在10^-6甚10^-8上敏感输入信号。硅材料的制造工艺与集成电路工艺有很好的兼容性,便于微型化、集成化及批量。
硅可以用许多材料覆盖,如氮化硅,因而能获得优异的防腐介质的保护。
SICK传感器的可归为:优异的机械特性;便于批量微机械结构和微机电元件;与微电子集成电路工艺兼容;微机械和微电子线路便于集成。
正是这些,使硅材料成为制造微机电和微机械结构主要的材料。
但是,硅材料对温度为敏感,其电阻温度系统接近于2000×10^-6/K的量。因此,凡是基于硅的压阻效应为测量原理的传感器,必须进行温度补偿,这是不利的一面;而可利用的一面则是,在测量其他参数的同时,可以直接对温度进行测量。
二、SICK传感器的排列是无序的,不同晶粒有不同的单晶取向,而每一晶粒内部有单晶的特征。晶粒与晶粒之间的部位叫做晶界,晶界对其电特性的影响可以通过掺杂原子浓度调节。
多晶硅膜一般由低压化学气相淀积(LPVCD)法制作而成,其电阻率随掺硼原子浓度的变化而发生较大变化。多晶硅膜的电阻率比单晶硅的高,特别在低掺杂原子浓度下,多晶硅电阻率迅速升高。随掺杂原子浓度不同,其电阻率可在较宽的数值范围内变化。
多晶硅具有的压电效应:压缩时电阻下降,拉伸时电阻上升。多晶硅电阻应变灵敏系统随掺杂浓度的增加而略有下降。其中纵向应变灵敏系数大值约为金属应变计大值的30倍,为单晶硅电阻应变灵敏系数大值的1/3;横向应灵敏系数,其值随掺杂浓度出现正负变化,故一般都不采用。此外,与单晶硅压阻相比,多晶硅压阻膜可以在不同的材料衬底上制作,如在介电体(SiO2、Si3N4)上。
其制备过程与常规半导体工艺兼容,且无PN结隔离问题,因而适合更高工作温度(t≥200℃)场合使用。在相同工作温度下,多晶硅压阻膜与单晶硅压阻膜相比,可更有效地抑制温度漂移,有利于长期稳定性的实现。
多晶硅电阻膜的准确阻值可以通过光刻手段获得。 综上所述,多晶硅膜具有较宽的工作温度范围(-60~+300℃),可调的电阻率特性、可调的温度系数、较高的应变灵敏系数及能达到准确调整阻值的特点。所以在研制微传感器和微执行器时,利用多晶硅膜这些电学特性,有时比只用单晶硅更有价值。例如,利用机械优异的单晶硅制作感压膜片,在其上覆盖一层介质膜SiO2,再在SiO2上淀积一层多晶硅压阻膜。这种混合结构的微型压力传感器,发挥了单晶硅和多晶硅材料各自的,其工作高温少可达200℃,甚300℃;低温为-60℃。
SICK传感器其电是*独立的。这不仅能消除因PN结泄漏而产生的漂移,还能提供很高的应变效应和高温(≥300℃)环境下的工作稳定性。蓝宝石材料的迟滞和蠕变小到可以忽略不计的程度,因而具有好的重复性;蓝宝石又是一种惰性材料,化学稳定性好,耐腐蚀,抗辐射能力强;蓝宝石的机械强度高。
综上所述,充分利用硅-蓝宝石的特点,可以制作出具有耐高温、耐腐蚀及抗辐射等的传感器和电路;但要获得精度高、稳定的指标,还必须解决好整体结构中材料之间的热匹配性,否则难以达到预期的目标。由于硅-蓝宝石材料又脆又硬,其硬度仅次于金刚石,制作工艺技术比较复杂。
SICK传感器件和装置的主要材料。为了提高器件和系统的以及扩大应用范围,化合物半导体材料在某些专门技术方面起着重要作用。如在红外光、可见光及紫外光波段的成像器和探测器中,PbSe、InAs、Hg1-xCdxTe(x代表Cd的百分比)等材料得到日益广泛的应用。
SICK传感器为例加以说明。利用红外幅射与物质作用产生的各种效应发展起来的,实用的光敏探测器,主要是针对红外幅射在大气传输中透射率为清晰的3个波段(1-3μm,3-5μm,8-14μm)研制的。对于波长1-3μm敏感的探测器有PbS、InAs及Hg0.61Cd0.39Te;对于波长3-5μm敏感的探测器有InAs、PbSe及Hg0.73Cd0.27Te;对于波长8-14μm敏感的探险测器则有Pb1-xSnxTe、Hg0.8Cd0.2Te及非本征(掺杂)半导体Ge:Hg,Si:Ga及Si:Al等。其中3元合金Hg1-xCdxTe是一种本征吸收材料,通过调整材料的组分,不仅可以制成适合3个波段的器件,还可以开发更长工作波段(1-30μm)的应用,因而备受人们的关注。
SICK传感器须指出的是,上述材料需要在低温(如77K)下工作。因为在室温下,由于晶格振动能量与杂质能量的相互作用,使热激励的载流子数增加,而激发的光子数则减少,从而降低了波长区的探测灵敏度。 五、SiC薄膜材料 SiC是另一种在特殊环境下使用的化合物半导体。